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Note 

Convergence of an Iterative Method 

for Derivatives of Eigensystems 

1. INTRODUCTION 

Rudisill and Chu [I] have proposed an iterative method for numerical solution of 
the following problem, which arises, for example, in the optimal design of systems 
where the dynamic stability or response of the system is a function of several design 
parameters. (See [I] for references concerning both applications in aeronautical 
engineering and other numerical methods.) Given an n x n matrix A which depends 
on m parameters, PI ,..., PwL , it is required to find the partial derivatives with respect 
to these parameters of one or more of the eigenvalues, hi , and corresponding normal- 
ized eigenvectors, xi , of A. Rudisill and Chu reported that in their experience the 
method converged, but they gave neither any guarantee that this would always be the 
case nor any estimate of the rate of convergence. 

In this note a simple proof is given of the convergence of the algorithm, essentially 
under the conditions mentioned in [l], and its rate of convergence is determined. It is 
shown that the limit of the sequence of approximations always gives the true value 
for the derivatives of the eigenvalues but it gives values for the derivatives of the 
eigenvectors which depend on the initial approximations chosen. A special choice is 
recommended. It is noted that a minor change should be made in the algorithm when 
the eigenvectors are complex. The insight obtained by the theoretical analysis given 
here is used to derive a more rapidly convergent iterative scheme. As in [l] the existence 
of all partial derivatives required is assumed. Some results concerning existence of 
derivatives of eigenvalues and eigenvectors are proved in [2]. 

2. PROOF OF CONVERGENCE 

It is given that 
(A - hiZ)xi = 0, i=l ,..., n, (1) 

and 
xi*xi = 1, i = l,..., 12, (4 

where Zis the identity matrix and the asterisk denotes the complex conjugate transpose. 
The basic algorithm considered here is 

p(k) = xi*A,,xi + xi*@ - Ail) u(k), 

4k + 1) = 1M.j - pW1 xi + -Mk))/h , 
107 

(3) 

(4) 
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where the subscript ,j denotes the partial derivative with respect to the jth parameter 
Pj and u(0) is the initial approximation for xi,j . We examine the convergence of 
u(k) and p(k) to x~,~ and hi.j , respectively, as k -+ CO. 

Substitution of (3) into (4) yields the nonhomogeneous linear recurrence relation 

U(k + I) + [xi*Au(k)/&]x, - AU(k)iA, - [xi*u(k)]xi = [A,jX, - (Xi*A,jXi)Xi]/hi . (5) 

If u(k) = Xi,j then, as shown in [l], u(k -+ 1) = .Yi,j . Hence a particular solution of 
(5), independent of k, is given by u(k) = x$,.~. Hence the general solution of (5) is 
given by 

t/(k) = .yi,j T au(k), 

where 01 is a constant scalar and u(k) satisfies the homogeneous equation 

~(k + 1) + [xi*Au(k)/hi]x< - Au(k)/& - [X~*U(~)]X, = 0. (6) 

Hence as k -+ co, u(k) approaches a limit if and only if u(k) does and u(k) -+ xi,j if 
and only if u(k) ---f 0. (Roundoff errors will ensure that the case 01 = 0 has no special 
significance in actual numerical calculation.) 

We now make the assumption that the set of eigenvectors {x1 ,..., x,} is linearly 
independent. (Some results in [l] require the stronger assumption that the eigenvalues 
are all distinct.) This implies that for each choice of u(0) there exist scalars /3,(k) such 
that 

44 = i P,(k) x, 3 k = 0, I, 2,.. . . 
p-1 

Substitution of (7) in (6) shows that 

BP@ + 1) = B,(kP,/~~ , for p # i. (8) 

Also it follows from (2) and (6) that 

xi*u(k + 1) = x,*u(k). 

(7) 

(9) 

Finally we make the assumption that 

If i = 1 then (7)-(10) show that there is a scalar, y, depending on u(O), such that 

and (9) shows that y = 0 if and only if x,*u(O) = 0. By (2), Re x~*x~,~ = 0. When 
all quantities are real it follows that if (and only if) 

xi*u(o) = 0 (12) 
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then u(k) -+ xi,j as k -+ co and, by (8) and (lo), 

(13) 

Moreover, (1) (3), and (11) now show that p(k) + Xi.$ and 

as k + co, whether or not u(0) satisfies (12). 
There is no difficulty in satisfying (12) as an arbitrary initial estimate u(0) could 

be replaced by u(0) - Xi*U(O)Xi . Like u(k), u(k) satisfies (9), but in an actual numerical 
calculation roundoff errors will prevent the computed values of u(k) from doing so 
exactly. This difficulty may be offset by replacing uk , the computed value of u(k), 
by uk - (xi*ulc)xi for the final value of k. 

When A is real, complex eigenvalues occur in complex conjugate pairs and hence 
if the first Y inequalities in (10) are strong then x1 ,..., x, are all real. It is perhaps for 
this reason that, instead of (2) Rudisill and Chu used the normalization 

xitxi = 1, (2’) 

where the superscript t denotes the simple transpose, and, consequently, they also 
had xit instead of xi* in (3). When xi is real (2) and (2’) are of course equivalent but 
the example 

A = [‘: -;] 

shows that it is not always possible to normalize complex eigenvectors by (2’). 
When Xi is complex (2) does not imply Im xi*Xi,j = 0, but without loss of generality 

we may take xi*Xi,j to be zero so that (12) again gives the appropriate criterion for 
choosing u(0). The reason is that (2) does not specify an eigenvector uniquely. If an 
eigenvector x statisfies (2) and z(PJ = x(PJ exp(icP& where c is an arbitrary real 
number, then the eigenvector z satisfies (2) but z*(O)Z,~(O) = x*(O)xJO) + ic. Indeed 
since any nonzero scalar multiple of an eigenvector is also an eigenvector, it follows 
from (11) that, for any u(O), the limit of the sequence {u(k)} can be regarded as a 
derivative of x1 when no normalization is required. 

The algorithm (3), (4) will not normally converge if i # 1 as by (8) and (10) some 
unwanted /3,(k) will grow with k. In the case when A is Hermitian and all inequalities 
in (10) are strict, an extension to (3), (4) given in [I] enables all Xi.i and hi,? to be 
calculated in order of increasing i. The method, which is based on the orthogonality 
of the different eigenvectors in that case, consists of alternating the step (3), (4) with 
a step which subtracts the unwanted growing terms. Convergence of this extension 
may also be proved by an obvious modification of the preceding argument. Again the 
approximations will satisfy (14), and if (12) is satisfied they will satisfy (13). 

This extension may be generalized to the non-Hermitian case, using the fact that 
a right-hand eigenvector is always orthogonal to a left-hand eigenvector corresponding 
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to a different eigenvalue. This generalization, which requires computing the derivatives 
of both left- and right-hand eigenvectors, is not mentioned in [l], possibly because 
it is not economic unless the number of unnecessary eigenvectors whose derivatives 
are required is very small compared with the order of A. The disadvantage of requiring 
additional eigenvectors and their derivatives is only partly offset by the fact that h,,j 
can then be calculated immediately from the well-known equation hi,j = yi*A,ixi/ 
yi*xi , where yi* is a left-hand eigenvector of A corresponding to Xi, and that the 
term [A,i - z.Q)Z]X, in (4) may be replaced by (A,i - h,,iZ)x, , which need only be 
calculated once. 

3. ACCELERATION OF CONVERGENCE 

Convergence of (3), (4) may be accelerated by using a shift of origin analogous to 
that used in some standard methods for computing eigenvalues [3]. This effectively 
replaces A by a matrix with each hi increased by a constant, hence changing the rate of 
convergence in (13), (14), while & , xi, and Xi,j are unchanged. Then (4) is replaced 
by the more general equation 

u(k + 1) = w .i - Awlx, + P - 4w 4w[h - 4m (15) 

where the u(k) are scalars to be chosen. Essentially the same analysis may be given 
for (3), (15) as was given for the special case (3) (4). Again (9) is satisfied but (8) 
must be replaced by 

P,(k + 1) = Btdk) [A, - dk)l/[h - dk)l, P f f* 

With a judicious choice of o(k), the ratios I[& - o(k)]/[h, - o(k)] / (i f 1) may 
generally all be made considerably smaller than 1 &/hi I. If all a(k) are given the 
same value g,, then when i = 1 the convergence estimates (13) and (14) must be 
replaced by 

where 

II 44 - x1.j II = Wk> and I p(k) - hi I = WX 

Similarly calculation of Xs,j and xi,$ for i # 1 by the extension of (3), (4) mentioned 
in the last section may be made more rapidly convergent by shifts of origin. 

In the classical problem of calculating eigenvalues, techniques for efficient choice 
of origin shifts have been developed which do not require a priori knowledge of the 
other eigenvalues [3, pp. 576-5781, and these techniques should be useful for selecting 
u(k) in (15). Choice of u(k) is especially easy when approximations to the other eigen- 
values are known, as the value of u(k) which gives the fastest possible convergence 
may be expressed in terms of two of the other eigenvalues [3]. Note that while X, 
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and x1 must be known with great accuracy for the algorithm to give accurate values 
of hlsj or xlsj , use of very crude estimates of other eigenvalues in choosing a(k) does 
not affect the accuracy of the result but merely gives a rate of convergence which, 
while usually faster than would be obtained with (3), (4), is slower than the fastest 
possible. 

Recall that the simple algorithm (3), (4) is convergent only when i = 1. However, (3), 
(15) can generally be used to find the derivatives of two distinct hi and the correspond- 
ing xi without recourse to the tedious extension used in [I]. For example when all the 
eigenvalues are real, the greatest and the least can each be made greatest in absolute 
value by appropriate origin shifts. 

4. SIMULTANEOUS ITERATION 

Motivated by the success of simultaneous iteration techniques for the classical 
eigenvalue problem [4], we consider the following generalization of (3), (4). Let 
A = diag(X, ,..., A,) and let X be the n x r matrix whose ith column is xi where 
1 -C r< n. Define matrices M(k), CT(k) by 

M(k) = (x*x)-l [X*&X + X*AU(k) - x*u(k)A], (16) 

U(k + 1) = [A,jX + AU(k) - XM(k)]A-1, k = 0, 1) 2,. . . . (17) 

Premultiplication by X(X*X)-‘X* represents orthogonal projection onto 
SP(X, ,..'> x,), the space spanned by x1 ,..., x, . Hence essentially the same argument as 
was used for (3) (4) shows that if / h,+1 I < I A, /, then, even if all other inequalities 
in (10) are weak, 

U(m) = pi U(k) 

both exist, the rate of convergence is given by I A,+,/& Ik, and all columns of 
(U(co) - Xvi) lie in sp(x, ,..., x,), regardless of the choice of U(0). Hence, in view of 
the nonuniqueness, noted in Section 2, of the derivatives of eigenvectors when unique 
normalization is not required, the columns of U(co) could be regarded as a basis for 
SP(X,,j ,.-a, X,,j). 

However, since X*U(k + 1) = X*U(k), U(c0) = Xpi if and only if 

x*u(o) = x*x,j . (18) 

Unfortunately, choice of U(0) to satisfy (18) is much harder than when r = 1. Even 
when A is Hermitian and hence X*X is constant, Re X*X,j is not generally known in 
advance. If (16), (17) is to be used to obtain individual xisj , it must be combined with 
some device, such as that described at the end of Section2, for eliminating the unwanted 
term, in this case the orthogonal projection of U(k) - X,j on sp(x, ,..., x,). This may 
well prove easier than the extension to (3), (4) for nondominant eigenvalues given 
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in [I] since with (16), (17) the unwanted term is not an unbounded function of k. 
Clearly if U(co) = X,i then M(co) = diag(& ,..., h,,j). 

5. EFFICIENCY CONSIDERATIONS 

Since the products Xi*A,jXi , xi*(A - &I), and A,$xi are independent of k, by far 
the most expensive step in the algorithm (3), (4) is the computation of Au(k) which 
needs n2 multiplications for each iterative step if all elements of A are nonzero. (As 
is usual with iterative methods, full advantage can be taken of any sparsity.) For a 
given number of iterative steps, (3), (15) involves exactly the same number of multipli- 
cations and divisions as (3), (4). Since it should require fewer iterations than (3), 
(4) it will be more efficient. 

By way of comparison, it is easy to show that a direct method given in [I, Sect. 31 
requires just over n2(n + 6)/3 multiplications and divisions to calculate both xiPj 
and Xi,j once Xi , hi , A,j (and of course A) are accurately known, when the equations 
are solved by triangular decomposition [3, Chap. 41. If only x,,~ and X,,j are required, 
the iterative method is likely to be more economical when the number of iterations 
required is less than n/3 (and possibly considerably more if A is sparse). Even when 
considerably more iterations are required, (3), (4) will often be more efficient than 
many previously published direct methods, some of which, unlike that given in [I], 
require the accurate calculation of a complete set of eigenvectors in order to calculate 
a single Xi,j . 

Another direct method is given in [5]. More references are given in [6]. 
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